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Parametric optimization, differentiation of solution mapping

Static convex optimization:
f, g1, . . . , gq : Rp → R, convex

x̄ ∈ arg min
x∈Rp

f(x) s.t. gi(x) ≤ 0, i = 1, . . . , q.

Parametric convex optimization:
f, g1, . . . , gq : Rp × Rm → R, continuous, convex in first variable

x̄(θ) ∈ arg min
x∈Rp

f(x, θ) s.t. gi(x, θ) ≤ 0, i = 1, . . . , q.

Solution / solver:
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Differentiation of solution mapping, why?

Solution / solver:

Sensitivity analysis: stability of minimizers under perturbation.
Bonnans, Fiacco, Jittorntrum, Robinson, Shapiro, . . .

Bilevel optimization: argminx f(x; θ) as a constraint.
Bracken, Dempe, Luo, McGill, Pang, Stackelberg . . .
Renewed interest in ML/signal: hyperparameter tuning, meta learning.

Ablin, Blondel, Chambolle, Duvenaud, Moreau, Pedregosa, Pock, Lorraine, Vaiter . . .
Abbeel, Finn, Franceschi, Levine, Pontil, Rajeswaran, Salzo . . .

Differentiable programming: x̄ as an elementary component of a larger model.
OptNet, Deep Equilibrium networks (DEQ), cvxpylayers, QPlayers . . .
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Parametric optimization: fixed point formalization

Solution / solver:

Optimality condition: ∇xf(x̄(θ), θ) = 0 and many extensions, . . .

Algorithm: xk+1(θ) = F (xk(θ), θ) → x̄(θ).

Fixed point formulation: x̄(θ) = F (x̄(θ), θ).

Roadmap: 1/ the story in the smooth setting 2/ recent nonsmooth extensions.
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A result from Gilbert (92, simplified)

Proposition: F : Rp × Rm → Rp, C1, F (·, θ) ρ < 1 Lipschitz, for all θ ∈ Rm.
Assume x0 : Rm → Rp is C1 and consider the recursion

xk+1(θ) = F (xk(θ), θ) ⇒ xk(θ) →
k→∞

x̄(θ),
∂xk

∂θ
→

k→∞

∂x̄

∂θ
.

Proof sketch: Banach fixed point theorem: F (·, θ) contraction, xk(θ) → x̄(θ)
Implicit functions theorem: I − JxF (x̄(θ), θ) invertible, x̄ is C1.

x̄(θ) = F (x̄(θ), θ)
∂x̄

∂θ
= JxF (x̄(θ), θ)

∂x̄

∂θ
+ JθF (x̄(θ), θ)

xk+1(θ) = F (xk(θ), θ)
∂xk+1

∂θ
= JxF (xk(θ), θ)

∂xk

∂θ
+ JθF (xk(θ), θ)

Derivative of fixed point ∼ fixed point of derivative.
M → JxF (x̄(θ), θ)M + JθF (x̄(θ), θ) contraction (∥JxF (x, θ)∥op ≤ ρ).
Continuity argument.
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Examples: studied in details by Mehmood and Ochs (2020)

Assumption: f : Rp×Rm → R, C2 and µ > 0 strongly convex and L-Lipschitz gradient
with respect to the first variable.

x̄(θ) = argmin
x

f(x, θ)

Gradient descent: 0 < α < 2/L

F (x, θ) = x− α∇xf(x, θ) C1, ρ = max {1− αµ, αL− 1}

Polyak’s heavy ball: 0 ≤ β < 1, 0 < α < 2(1 + β)/L

F (x, z, θ) = (x− α∇xf(x, θ) + β(x− z), x) C1

Not a contraction: but spectral radius of Jx,zF < 1 (e.g. Polyak’s book).
Change metric: local contraction after a linear change of variable.

Actual result from Gilbert:

Spectral radius of Jacobian < 1 at fixed point (in a neighborhood by continuity).

Assume iteration converge
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Why study nonsmoothness?

Solution / solver:

f may not be differentiable (Lasso hyperparameter tuning, learning TV regularizer).

Algorithms / optimality condition involving projections / prox operators (cvxpylayers).

Already implemented (equilibrium nets, opt layers, TensorFlow, PyTorch, Jax).

Algorithmic differentiation:

differentiate solutions ⊂ differential calculus ∼ algorithmic differentiation.

nonsmooth → generalized derivatives.

Clarke’s generalized derivatives: F : Rn → Rm

locally Lipschitz (Rademacher, differentiable a.e.).

Jacc F (x)

= conv {lim JacF (xk) : xk → x, k → +∞}

Jacc F : Rn ⇒ Rn×m. m = 1: subdifferential ∂cF

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)
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Nonsmooth calculus fails

g1, g2 : Rp → R locally Lipschitz, then ∂c(g1 + g2) ⊂ ∂cg1 + ∂cg2.

Equality if g1 and g2 are convex or C1.

No equality in general: g : x 7→ |x|

∂c(g − g) = ∂c(x 7→ 0) = {0} ⊂ ∂c(g) + ∂c(−g) =

{
{0} if x ̸= 0

[−2, 2] if x = 0
.

Take f : Rp → R Lipschitz, composition of elementary Lipschitz blocks g1, . . . , gL

f = gL ◦ . . . ◦ g1

autodifff : Rp → Rp, formal chain rule: a selection in the set valued field

Jac cgL ◦ . . . ◦ Jac cg1 : Rp ⇒ Rp ̸= ∂cf : Rp ⇒ Rp
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Conservative gradients (Bolte, Pauwels 2020, long story, long history)

Definition [Conservative gradient] :
f : Rp → R locally Lipschitz, D : Rp ⇒ Rp, closed graph, non empty, locally bounded,
For any Lipschitz curve γ : [0, 1] 7→ Rp

d

dt
f(γ(t)) = ⟨v, γ̇(t)⟩ ∀v ∈ D(γ(t)), a.e. t ∈ [0, 1]

f is path-differentiable ⇔ ∃D conservative for f (could be many) ⇔ ∂cf conservative.
Conservative Jacobians defined similarly.

Path-differentiability generic in applications:
semi-algebraic (or tame) ⇒ Jac cf is conservative.

Chain rule: g1, . . . , gL path-differentiable, conservative Jacobians D1, . . . , DL, then
DL ◦ . . . ◦D1 is conservative for f = gL ◦ . . . ◦ g1.
autodifff is a selection in a conservative gradient.

Optimization: Generically, as αk → 0 (under appropriate mild assumptions).

θk+1 = θk − αk autodiff f(θk) selection in a conservative gradient

dist(θk, critf ) →
k→∞

0 critf = {θ, 0 ∈ ∂cf(θ)}
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Implicit differentiation of fixed points (Bolte, Le, Pauwels, Silvetti, 2021)

F : Rp × Rm → Rm Lipschitz and x̄ = F (x̄, θ)

Classical implicit differentiation:

F smooth, assume

[A,B] = JacF (x̄, θ), I−A invertible.

x̄ : U → Rp, smooth locally:

F (x̄(θ), θ) = x̄(θ).

Implicit jacobian of x̄:

θ → (I−A)−1B : [A,B] = JacF (x̄(θ), θ).

Nonsmooth implicit differentiation:

F path-differentiable, assume

∀[AB] ∈ Jac cF (x̄, θ), I−A invertible.

x̄ : U → Rp, path-differentiable:

F (x̄(θ), θ) = x̄(θ).

Implicit conservative jacobian for x̄:

θ ⇒
{
(I −A)−1B : [A B] ∈ Jacc F (x̄(θ), θ)

}
.

Invertibility: F (·, θ), ρ < 1 Lipschitz, ∥A∥op ≤ ρ, ∀[A B] ∈ Jacc F (x̄(θ), θ).
Extends to any D conservative for F , in place of Jacc F .
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Algorithmic unrolling (Bolte, Pauwels, Vaiter, 2022)

F : Rp × Rm → Rp, algorithmic recursion, x0(θ) ∈ Rp

xk+1(θ) = F (xk(θ), θ).

For all θ, F (·, θ) is ρ Lipschitz, ρ < 1: xk(θ) →
k→∞

x̄(θ).

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation:

Jacxk+1(θ) = AJacxk(θ) +B

[A,B] = JacF (xk(θ), θ)

Limiting jacobian.

Jacxk(θ) →
k→∞

Jac x̄(θ)

Nonsmooth unrolling :

F path-differentiable.

Conservative jacobian propagation:

Dk+1(θ) =
{
ADk(θ) +B

[A,B] ∈ Jac cF (xk(θ), θ)
}

Limiting conservative jacobian:

Dk(θ) →
k→∞

D̄(θ) conservative for x̄

Remark: ∥A∥op ≤ ρ, ∀[A B] ∈ Jacc F (x̄(θ), θ), crucial for set valued fixed point.
Extends to any D conservative for F , in place of Jacc F .
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Specificities of the nonsmooth setting

Two different conservative Jacobians:

Implicit differentiation:

Dimp x̄(θ) = {M, ∃[A,B] ∈ Jacc F (x̄(θ), θ), M = AM +B}

Iterative differentiation: unique D̄(θ) such that

∀M ∈ D̄(θ), ∀[A,B] ∈ Jacc F (x̄(θ), θ), AM +B ∈ D̄(θ)

Examples: f strongly convex, Lipschitz path-differentiable gradient (not C2)

Gradient descent Heavy-Ball
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Operator norm condition cannot be extended to spectral radius.
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Application to monotone inclusions (Bolte, Pauwels, Silvetti-Falls 2023)

For all θ, Aθ = A(·, θ) : Rp ⇒ Rp and Bθ = B(·, θ) : Rp → Rp maximal monotone.

0 ∈ A(·, θ) + B(·, θ) solution set non-empty

Assumption: For all γ > 0, RγAθ = (I + γAθ)
−1 and B Lipschitz and path-

differentiable, jointly in (x, θ).

F (x, θ) := RγAθ (x− γBθ(x)) path-differentiable jointly in (x, θ)

Theorem: Assume that Aθ or Bθ is strongly monotone.
Then for small γ, F is ρ < 1 Lipschitz and for any [A,B] ∈ autodiffF , ∥A∥op ≤ ρ.

Applications: fθ, gθ, convex, lower semi continuous, proper, value in R ∪ {+∞}.
Forward-backward: fθ Lipschitz gradient, fθ or gθ strongly convex.

min
x∈Rp

fθ(x) + gθ(x) 0 ∈ ∇xfθ + ∂xgθ

Primal-dual: fθ and gθ strongly convex.

min
x∈Rp

gθ(x) + max
y∈Rq

⟨Kθx, y⟩ − fθ(y)

(
0
0

)
∈
(
∂gθ 0
0 ∂fθ

)
+

(
0 Kθ

−Kθ 0

)
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Conclusion

F (x̄(θ), θ) = x̄(θ) xk+1(θ) = F (xk(θ), θ)

xk(θ) Jxk (θ)

x̄(θ) ???

nonsmooth

autodiff

k
→

+
∞

derivative?

li
m
it
?

Extend implicit and iterative differentiation to the nonsmooth setting.
Conservative Jacobians.
∼ smooth setting:
autodiff, convergence, strong convexity, optimization . . .

References:

Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning. Bolte, Pauwels. Math. Prog. 2020.
Nonsmooth Implicit Differentiation for Machine Learning and Optimization. Bolte, Le, Pauwels, Silveti-Falls Neurips 2021.
Automatic differentiation of nonsmooth iterative algorithms. Bolte, Pauwels, Vaiter Neurips 2022.
Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems. Bolte, Pauwels, Silveti-Falls SIOPT, 2023

Thanks.
17 / 17


