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Parametric optimization, differentiation of solution mapping

Static convex optimization:
f,91,---,9¢: R? = R, convex

a’cearg;rel]ikr% f(z) sit. gi(z) <0, i=1,...,q.

Parametric convex optimization:
f01,...,94: RP x R™ — R, continuous, convex in first variable

zZ(0) € arg nel%Rr}) f(z,0) st gi(z,0) <0, 1=1,...,q.

Solution / solver: A > 5(9) c RP
feR™ i _
min f(z, 6) N
) o0
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Differentiation of solution mapping, why?

Solution / solver: R > :17;(9) c RP
feR™ i _
min f(z, ) N
Y, 06

Sensitivity analysis: stability of minimizers under perturbation.
Bonnans, Fiacco, Jittorntrum, Robinson, Shapiro, . ..

Bilevel optimization: arg min, f(x;0) as a constraint.
Bracken, Dempe, Luo, McGill, Pang, Stackelberg ...
Renewed interest in ML /signal: hyperparameter tuning, meta learning.

Ablin, Blondel, Chambolle, Duvenaud, Moreau, Pedregosa, Pock, Lorraine, Vaiter ...
Abbeel, Finn, Franceschi, Levine, Pontil, Rajeswaran, Salzo ...

Differentiable programming: Z as an elementary component of a larger model.
OptNet, Deep Equilibrium networks (DEQ), cvxpylayers, QPlayers ...

3/17



Parametric optimization: fixed point formalization

Solution / solver: ) > #(0) € R?
6 € R™ i
min f(z, 6)

Optimality condition: V. f(Z(0),0) = 0 and many extensions, ...

Algorithm: z,1(0) = F(z,(6),0) — z(6).

Fixed point formulation: z(0) = F(z(0),0).

Roadmap: 1/ the story in the smooth setting 2/ recent nonsmooth extensions.
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@ The smooth setting
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A result from Gilbert (92, simplified)

Optimization Methods and Software, 1992, Vol. 1, pp.13-21 ©1992 Gordon & Breach Science Publishers, S.A.
Reprints available directly from the publisher Printed in the United Kingdom.
Photocopying permitted by license only

AUTOMATIC DIFFERENTIATION AND ITERATIVE
PROCESSES*
JEAN CHARLES GILBERT
INRIA, Domaine de Voluceau, Rocquencourt, Le Chesnay Cedex, France.
Proposition: F': R? x R™ — R?, C*, F(-,0) p < 1 Lipschitz, for all § € R™.
Assume xo: R™ — RP is C* and consider the recursion

Oxk o0zT
0)=F 0),0 0) — z(0 — = .

B O) = F@n(0),0) = w0 o 510), S o o

Proof sketch: Banach fixed point theorem: F(-,0) contraction, zx(0) — Z(0)
Implicit functions theorem: I — J,F(Z(6),0) invertible, Z is C*.

7(0) = F(z(6),6) % = JF(%(0), 9)% + JoF(3(6),6)
2rr1(0) = F(ai(6),0) ‘9%’“9*1 = JzF(xk(G),G)% + JoF(xx(0),0)

Derivative of fixed point ~ fixed point of derivative.
M — J.F(z(0),0)M + JoF(z(0),0) contraction (||JoF (z,0)]op < p).
Continuity argument.
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Examples: studied in details by Mehmood and Ochs (2020)

Assumption: f: R? xR™ — R, C? and u > 0 strongly convex and L-Lipschitz gradient
with respect to the first variable.

z(0) = arg mwin f(z,0)

Gradient descent: 0 < oo < 2/L

F(z,0) =z —aV,f(z,0) c', p=max{l—aual -1}

Polyak’s heavy ball: 0 <3< 1, 0<a<2(1+8)/L
F(m,z,@)Z(w—onxf(:mQ)—i—ﬁ(a:—z),m) Cl
Not a contraction: but spectral radius of J, .F < 1 (e.g. Polyak's book).

Change metric: local contraction after a linear change of variable.

Actual result from Gilbert:
@ Spectral radius of Jacobian < 1 at fixed point (in a neighborhood by continuity).

o Assume iteration converge
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© Nonsmoothness
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Why study nonsmoothness?

Solution / solver: 5(0) c R?
0 eR™ i
min f(z, ) oz
00

o f may not be differentiable (Lasso hyperparameter tuning, learning TV regularizer).
@ Algorithms / optimality condition involving projections / prox operators (cvxpylayers).
o Already implemented (equilibrium nets, opt layers, TensorFlow, PyTorch, Jax).

Algorithmic differentiation:

o differentiate solutions C differential calculus ~ algorithmic differentiation.
@ nonsmooth — generalized derivatives.

Clarke’s generalized derivatives: F' : R" — R™ AC
locally Lipschitz (Rademacher, differentiable a.e.). :

Jac® F(z)

= conv {lim Jac F(zx) : xx — =,k — +oo}

Jac® F: R™ = R™"*™. m = 1: subdifferential 9°F
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Nonsmooth calculus fails

g1,92: RP — R locally Lipschitz, then 9°(g1 + g2) C 9°g1 + 9°g2.

o Equality if g1 and g2 are convex or C.

o No equality in general: g: x — |z

¢ . c ¢ {0} ifz#0
0(g—g)=0(x—0)={0}C I 0°(—g) = .

(9 —9) = 0°(x = 0) = {0} (9) +9°(~9) {[_272] 20

o Take f: R? — R Lipschitz, composition of elementary Lipschitz blocks g1, ..., gL

f=grLo...oq

o autodiff f: RP — RP, formal chain rule: a selection in the set valued field

Jac®gr o...0Jacg;: RP = R? # O°f:RP=RP
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Conservative gradients (Bolte, Pauwels 2020, long story, long history)

Definition [Conservative gradient] :
f: R? — R locally Lipschitz, D: RP = RP, closed graph, non empty, locally bounded,
For any Lipschitz curve «y: [0, 1] — R?

d .
7/0®) =3@)  YoeD(®), ae tel01]
f is path-differentiable < 3D conservative for f (could be many) < 9°f conservative.

Conservative Jacobians defined similarly.

Path-differentiability generic in applications:
semi-algebraic (or tame) = Jacf is conservative.

Chain rule: g1,...,gr path-differentiable, conservative Jacobians D;,...,Dr, then
Dy o...0D; is conservative for f =gro...0g;.
autodiff f is a selection in a conservative gradient.

Optimization: Generically, as ax — 0 (under appropriate mild assumptions).

Ok+1 = 0 — apautodiff f(0x) selection in a conservative gradient
dist (0, crits) 3 0 crity = {6, 0 € 9°f(0)}
— 00
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Implicit differentiation of fixed points (Bolte, Le, Pauwels, Silvetti, 2021)

F:RP x R™ — R™ Lipschitz and z = F(z, 0)

Classical implicit differentiation: Nonsmooth implicit differentiation:
F smooth, assume F' path-differentiable, assume
[A, B] = Jac F(z,0), I—A invertible. V[A B] € Jac “F(z,0), I—A invertible.
z : U — RP, smooth locally: Z : U — RP, path-differentiable:
F(z(0),0) = z(0). F(z(0),0) = z(0).
Implicit jacobian of z: Implicit conservative jacobian for Z:

0 — (I-A)"'B:[A,B] = JacF(z(0),0). 0= {(I—A)"'B:[AB]e Jac® F(z(0),0)}

Invertibility: F(-,0), p < 1 Lipschitz, ||Allop < p,V[A B] € Jac® F(Z(0),0).
Extends to any D conservative for F', in place of Jac® F.
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Algorithmic unrolling (Bolte, Pauwels, Vaiter, 2022)

F :R? x R™ — RP, algorithmic recursion, () € R?

zr41(0) = F(z(0),0).

For all 8, F(-,0) is p Lipschitz, p < 1: zr(0) W z(0).
— 00
Classical asymptotics (Gilbert 92):  Nonsmooth unrolling :
F smooth. F path-differentiable.
Forward jacobian propagation: Conservative jacobian propagation:
Jac xk+1(9) = AJac xk(e) + B Dk+1(9) = {ADk(H) + B
[A, B] = Jac F(x(0),0) [A, B] € Jac “F(x(6),0)}

Limiting jacobian. Limiting conservative jacobian:

Jacxi(0) e Jac z(0) Dy(0) W D(#) conservative for Z
bade el

Remark: ||Allop < p,V[A B] € Jac® F(z(0),0), crucial for set valued fixed point.
Extends to any D conservative for F', in place of Jac® F.
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Specificities of the nonsmooth setting

Two different conservative Jacobians:

Implicit differentiation:
Dimp z(0) = {M, J[A, B] € Jac® F(z(0),0), M = AM + B}

Iterative differentiation: unique D(#) such that

VM € D(6), V[A, B] € Jac® F(z(6),0), AM + B € D(8)

Examples: f strongly convex, Lipschitz path-differentiable gradient (not C?)
Heavy-Ball

Gradient descent
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Operator norm condition cannot be extended to spectral radius.
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Application to monotone inclusions (Bolte, Pauwels, Silvetti-Falls 2023)

For all 6, Ag = A(-,0) : RP = R? and Bg = B(,0) : R? — R? maximal monotone.
0e€ A(-,0)+ B(-,0) solution set non-empty
Assumption: For all v > 0, Ry4, = (I + vAg)~! and B Lipschitz and path-
differentiable, jointly in (z, 6).
F(z,0) := Rya,(x — vBs(z)) path-differentiable jointly in (z,6)

Theorem: Assume that Ap or By is strongly monotone.
Then for small v, F is p < 1 Lipschitz and for any [A, B] € autodiffF', ||Alop < p.

Applications: fy, go, convex, lower semi continuous, proper, value in R U {4oc0}.
Forward-backward: fg Lipschitz gradient, fg or go strongly convex.

min fo(x) + go(x) 0 € Vafo+ 0xg0

Primal-dual: fy and gg strongly convex.
. 0 dgs 0O 0 Ky
min go(w) + max (Kow, y) — fo(y) (0) € ( 0 8f9> + (—Ko 0 )
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© Conclusion
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Conclusion

F(z(0),0) = z(0) zr41(0) = F(zx(0),0)
nonsmooth
_
ok (0) = oair J”“"i(e)
3 e
+ s
+ £

~
ey PP
derivative?

o Extend implicit and iterative differentiation to the nonsmooth setting.
o Conservative Jacobians.
o ~ smooth setting:

autodiff, convergence, strong convexity, optimization ...
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Thanks.
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