Nonsmooth differentiation of parametric fixed points

Edouard Pauwels (Toulouse School of Economics, France)
joint work with
Jérôme Bolte, Tâm Lê, Antonio Silveti-Falls, Samuel Vaiter

Sigma-Mode (January, 2024)

Parametric optimization, differentiation of solution mapping

Static convex optimization:

$f, g_{1}, \ldots, g_{q}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, convex

$$
\bar{x} \in \arg \min _{x \in \mathbb{R}^{p}} f(x)
$$

s.t. $\quad g_{i}(x) \leq 0, \quad i=1, \ldots, q$.

Parametric convex optimization:

$f, g_{1}, \ldots, g_{q}: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$, continuous, convex in first variable

$$
\bar{x}(\theta) \in \arg \min _{x \in \mathbb{R}^{p}} f(x, \theta) \quad \text { s.t. } \quad g_{i}(x, \theta) \leq 0, \quad i=1, \ldots, q
$$

Differentiation of solution mapping, why?

Sensitivity analysis: stability of minimizers under perturbation.
Bonnans, Fiacco, Jittorntrum, Robinson, Shapiro, ...

Bilevel optimization: $\arg \min _{x} f(x ; \theta)$ as a constraint.
Bracken, Dempe, Luo, McGill, Pang, Stackelberg ...
Renewed interest in ML/signal: hyperparameter tuning, meta learning.
Ablin, Blondel, Chambolle, Duvenaud, Moreau, Pedregosa, Pock, Lorraine, Vaiter ... Abbeel, Finn, Franceschi, Levine, Pontil, Rajeswaran, Salzo ...

Differentiable programming: \bar{x} as an elementary component of a larger model. OptNet, Deep Equilibrium networks (DEQ), cvxpylayers, QPlayers ...

Parametric optimization: fixed point formalization

Optimality condition: $\nabla_{x} f(\bar{x}(\theta), \theta)=0$ and many extensions, \ldots

Algorithm: $x_{k+1}(\theta)=F\left(x_{k}(\theta), \theta\right) \rightarrow \bar{x}(\theta)$.

Fixed point formulation: $\bar{x}(\theta)=F(\bar{x}(\theta), \theta)$.

Roadmap: 1 / the story in the smooth setting 2 / recent nonsmooth extensions.

(1) The smooth setting

(2) Nonsmoothness

(3) Conclusion

A result from Gilbert (92, simplified)

Optimization Methods and Software, 1992, Vol. 1, pp.13-21 Reprints available directly from the publisher Photocopying permitted by license only

AUTOMATIC DIFFERENTIATION AND ITERATIVE PROCESSES*
 JEAN CHARLES GILBERT
 INRIA, Domaine de Voluceau, Rocquencourt, Le Chesnay Cedex, France.

Proposition: $F: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, C^{1}, F(\cdot, \theta) \rho<1$ Lipschitz, for all $\theta \in \mathbb{R}^{m}$. Assume $x_{0}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is C^{1} and consider the recursion

$$
x_{k+1}(\theta)=F\left(x_{k}(\theta), \theta\right) \quad \Rightarrow \quad x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta), \quad \frac{\partial x_{k}}{\partial \theta} \underset{k \rightarrow \infty}{\rightarrow} \frac{\partial \bar{x}}{\partial \theta} .
$$

Proof sketch: Banach fixed point theorem: $F(\cdot, \theta)$ contraction, $x_{k}(\theta) \rightarrow \bar{x}(\theta)$ Implicit functions theorem: $I-J_{x} F(\bar{x}(\theta), \theta)$ invertible, \bar{x} is C^{1}.

$$
\begin{aligned}
\bar{x}(\theta) & =F(\bar{x}(\theta), \theta) & \frac{\partial \bar{x}}{\partial \theta} & =J_{x} F(\bar{x}(\theta), \theta) \frac{\partial \bar{x}}{\partial \theta}+J_{\theta} F(\bar{x}(\theta), \theta) \\
x_{k+1}(\theta) & =F\left(x_{k}(\theta), \theta\right) & \frac{\partial x_{k+1}}{\partial \theta} & =J_{x} F\left(x_{k}(\theta), \theta\right) \frac{\partial x_{k}}{\partial \theta}+J_{\theta} F\left(x_{k}(\theta), \theta\right)
\end{aligned}
$$

Derivative of fixed point \sim fixed point of derivative. $M \rightarrow J_{x} F(\bar{x}(\theta), \theta) M+J_{\theta} F(\bar{x}(\theta), \theta)$ contraction $\left(\left\|J_{x} F(x, \theta)\right\|_{\mathrm{op}} \leq \rho\right)$. Continuity argument.

Examples: studied in details by Mehmood and Ochs (2020)

Assumption: $f: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, C^{2}$ and $\mu>0$ strongly convex and L-Lipschitz gradient with respect to the first variable.

$$
\bar{x}(\theta)=\arg \min _{x} f(x, \theta)
$$

Gradient descent: $0<\alpha<2 / L$

$$
F(x, \theta)=x-\alpha \nabla_{x} f(x, \theta) \quad C^{1}, \quad \rho=\max \{1-\alpha \mu, \alpha L-1\}
$$

Polyak's heavy ball: $0 \leq \beta<1,0<\alpha<2(1+\beta) / L$

$$
\begin{equation*}
F(x, z, \theta)=\left(x-\alpha \nabla_{x} f(x, \theta)+\beta(x-z), x\right) \tag{1}
\end{equation*}
$$

Not a contraction: but spectral radius of $J_{x, z} F<1$ (e.g. Polyak's book). Change metric: local contraction after a linear change of variable.

Actual result from Gilbert:

- Spectral radius of Jacobian <1 at fixed point (in a neighborhood by continuity).
- Assume iteration converge
(2) Nonsmoothness
(3) Conclusion

Why study nonsmoothness?

- f may not be differentiable (Lasso hyperparameter tuning, learning TV regularizer).
- Algorithms / optimality condition involving projections / prox operators (cvxpylayers).
- Already implemented (equilibrium nets, opt layers, TensorFlow, PyTorch, Jax).

Algorithmic differentiation:

- differentiate solutions \subset differential calculus \sim algorithmic differentiation.
- nonsmooth \rightarrow generalized derivatives.

Clarke's generalized derivatives: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ locally Lipschitz (Rademacher, differentiable a.e.).

$$
\begin{aligned}
& \operatorname{Jac}^{c} F(x) \\
= & \operatorname{conv}\left\{\lim \operatorname{Jac} F\left(x_{k}\right): x_{k} \rightarrow x, k \rightarrow+\infty\right\}
\end{aligned}
$$

$\mathrm{Jac}^{c} F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n \times m} . m=1:$ subdifferential $\partial^{c} F$

Nonsmooth calculus fails

$g_{1}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, then $\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2}$.

- Equality if g_{1} and g_{2} are convex or C^{1}.
- No equality in general: $g: x \mapsto|x|$

$$
\partial^{c}(g-g)=\partial^{c}(x \mapsto 0)=\{0\} \subset \quad \partial^{c}(g)+\partial^{c}(-g)= \begin{cases}\{0\} & \text { if } x \neq 0 \\ {[-2,2]} & \text { if } x=0\end{cases}
$$

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz, composition of elementary Lipschitz blocks g_{1}, \ldots, g_{L}

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

- autodiff $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$, formal chain rule: a selection in the set valued field

$$
\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p} \quad \neq \quad \partial^{c} f: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}
$$

Conservative gradients (Bolte, Pauwels 2020, long story, long history)

Definition [Conservative gradient] :

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

f is path-differentiable $\Leftrightarrow \exists D$ conservative for f (could be many) $\Leftrightarrow \partial^{c} f$ conservative. Conservative Jacobians defined similarly.

Path-differentiability generic in applications:

 semi-algebraic (or tame) $\Rightarrow \mathrm{Jac}^{c} f$ is conservative.Chain rule: g_{1}, \ldots, g_{L} path-differentiable, conservative Jacobians D_{1}, \ldots, D_{L}, then $D_{L} \circ \ldots \circ D_{1}$ is conservative for $f=g_{L} \circ \ldots \circ g_{1}$. autodiff f is a selection in a conservative gradient.

Optimization: Generically, as $\alpha_{k} \rightarrow 0$ (under appropriate mild assumptions).

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} \text { autodiff } f\left(\theta_{k}\right) & \text { selection in a conservative gradient } \\
\operatorname{dist}\left(\theta_{k}, \operatorname{crit}_{f}\right) & \underset{k \rightarrow \infty}{\rightarrow} 0 & \operatorname{crit}_{f}=\left\{\theta, 0 \in \partial^{c} f(\theta)\right\}
\end{array}
$$

Implicit differentiation of fixed points (Bolte, Le, Pauwels, Silvetti, 2021)

$F: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz and $\bar{x}=F(\bar{x}, \theta)$

Classical implicit differentiation:
F smooth, assume
$[A, B]=\operatorname{Jac} F(\bar{x}, \theta), \quad I-A$ invertible.
$\bar{x}: U \rightarrow \mathbb{R}^{p}$, smooth locally:

$$
F(\bar{x}(\theta), \theta)=\bar{x}(\theta)
$$

Implicit jacobian of \bar{x} :
$\theta \rightarrow(I-A)^{-1} B:[A, B]=\operatorname{Jac} F(\bar{x}(\theta), \theta) . \quad \theta \rightrightarrows\left\{(I-A)^{-1} B:[A B] \in \operatorname{Jac}^{c} F(\bar{x}(\theta), \theta)\right\}$

Invertibility: $F(\cdot, \theta), \rho<1$ Lipschitz, $\|A\|_{\mathrm{op}} \leq \rho, \forall[A B] \in \operatorname{Jac}^{c} F(\bar{x}(\theta), \theta)$.
Extends to any D conservative for F, in place of $\mathrm{Jac}^{c} F$.

Algorithmic unrolling (Bolte, Pauwels, Vaiter, 2022)

$F: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{p}$

$$
x_{k+1}(\theta)=F\left(x_{k}(\theta), \theta\right)
$$

For all $\theta, F(\cdot, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta) .
$$

Classical asymptotics (Gilbert 92): F smooth.

Forward jacobian propagation:

$$
\begin{aligned}
\mathrm{Jac} x_{k+1}(\theta) & =A \mathrm{Jac} x_{k}(\theta)+B \\
{[A, B] } & =\operatorname{Jac} F\left(x_{k}(\theta), \theta\right)
\end{aligned}
$$

Limiting jacobian.

$$
\operatorname{Jac} x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \operatorname{Jac} \bar{x}(\theta)
$$

Nonsmooth unrolling :

F path-differentiable.

Conservative jacobian propagation:

$$
\begin{aligned}
D_{k+1}(\theta) & =\left\{A D_{k}(\theta)+B\right. \\
& {\left.[A, B] \in \mathrm{Jac}^{c} F\left(x_{k}(\theta), \theta\right)\right\} }
\end{aligned}
$$

Limiting conservative jacobian:

$$
D_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{D}(\theta) \quad \text { conservative for } \bar{x}
$$

Remark: $\|A\|_{\mathrm{op}} \leq \rho, \forall[A B] \in \mathrm{Jac}^{c} F(\bar{x}(\theta), \theta)$, crucial for set valued fixed point. Extends to any D conservative for F, in place of $\mathrm{Jac}^{c} F$.

Specificities of the nonsmooth setting

Two different conservative Jacobians:

Implicit differentiation:

$$
D_{\mathrm{imp}} \bar{x}(\theta)=\left\{M, \exists[A, B] \in \mathrm{Jac}^{c} F(\bar{x}(\theta), \theta), M=A M+B\right\}
$$

Iterative differentiation: unique $\bar{D}(\theta)$ such that

$$
\forall M \in \bar{D}(\theta), \forall[A, B] \in \mathrm{Jac}^{c} F(\bar{x}(\theta), \theta), A M+B \in \bar{D}(\theta)
$$

Examples: f strongly convex, Lipschitz path-differentiable gradient (not C^{2})

Gradient descent

Heavy-Ball

Operator norm condition cannot be extended to spectral radius.

Application to monotone inclusions (Bolte, Pauwels, Silvetti-Falls 2023)

For all $\theta, \mathcal{A}_{\theta}=\mathcal{A}(\cdot, \theta): \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$ and $\mathcal{B}_{\theta}=\mathcal{B}(\cdot, \theta): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ maximal monotone.

$$
0 \in \mathcal{A}(\cdot, \theta)+\mathcal{B}(\cdot, \theta) \quad \text { solution set non-empty }
$$

Assumption: For all $\gamma>0, \mathcal{R}_{\gamma \mathcal{A}_{\theta}}=\left(I+\gamma \mathcal{A}_{\theta}\right)^{-1}$ and \mathcal{B} Lipschitz and pathdifferentiable, jointly in (x, θ).

$$
F(x, \theta):=\mathcal{R}_{\gamma \mathcal{A}_{\theta}}\left(x-\gamma \mathcal{B}_{\theta}(x)\right) \quad \text { path-differentiable jointly in }(x, \theta)
$$

Theorem: Assume that \mathcal{A}_{θ} or \mathcal{B}_{θ} is strongly monotone.
Then for small γ, F is $\rho<1$ Lipschitz and for any $[A, B] \in$ autodiff $F,\|A\|_{\text {op }} \leq \rho$.
Applications: f_{θ}, g_{θ}, convex, lower semi continuous, proper, value in $\mathbb{R} \cup\{+\infty\}$. Forward-backward: f_{θ} Lipschitz gradient, f_{θ} or g_{θ} strongly convex.

$$
\min _{x \in \mathbb{R}^{p}} f_{\theta}(x)+g_{\theta}(x) \quad 0 \in \nabla_{x} f_{\theta}+\partial_{x} g_{\theta}
$$

Primal-dual: f_{θ} and g_{θ} strongly convex.

$$
\min _{x \in \mathbb{R}^{p}} g_{\theta}(x)+\max _{y \in \mathbb{R}^{q}}\left\langle K_{\theta} x, y\right\rangle-f_{\theta}(y) \quad\binom{0}{0} \in\left(\begin{array}{cc}
\partial g_{\theta} & 0 \\
0 & \partial f_{\theta}
\end{array}\right)+\left(\begin{array}{cc}
0 & K_{\theta} \\
-K_{\theta} & 0
\end{array}\right)
$$

$$
F(\bar{x}(\theta), \theta)=\bar{x}(\theta) \quad x_{k+1}(\theta)=F\left(x_{k}(\theta), \theta\right)
$$

$$
\begin{array}{cc}
x_{k}(\theta) & \text { nonsmooth } \\
\text { autodiff } & J_{x_{k}}(\theta) \\
\begin{array}{cc}
8 & \\
+ & \\
\uparrow & \\
2 & \\
x(\theta) & \\
& \\
& \text { derivative? }
\end{array}
\end{array}
$$

- Extend implicit and iterative differentiation to the nonsmooth setting.
- Conservative Jacobians.
- ~ smooth setting:
autodiff, convergence, strong convexity, optimization ...

References:

- Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning. Bolte, Pauwels. Math. Prog. 2020.
- Nonsmooth Implicit Differentiation for Machine Learning and Optimization. Bolte, Le, Pauwels, Silveti-Falls Neurips 2021.
- Automatic differentiation of nonsmooth iterative algorithms. Bolte, Pauwels, Vaiter Neurips 2022.
- Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems. Bolte, Pauwels, Silveti-Falls SIOPT, 2023

Thanks.

